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Theorem with proof idea

Goal: Show boundary rigidity of lattices in products of trees
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CAT(0) spaces

Examples:
R2, H2, trees,

CAT(0) square complexes,

X1, X2 CAT(0)⇒ X1 × X2 CAT(0)

All spaces in this talk are CAT(0) (if not said otherwise)

d d ′

d ≤ d ′

X R2

R2 γ

daim(X1) = diam(X2) =∞⇒ each geodesic ray γ lies in a flat!
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R2

∂X := ∂Xp

∂R2 = S1

∂Xp := {γ | γ : [0,∞)→ X geodesic ray, γ(0) = p}

p

=

=

Cone topology of the visual boundary
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X complete CAT(0) space, p ∈ X

∂X := ∂Xp

∂Xp := {γ | γ : [0,∞)→ X geodesic ray, γ(0) = p}=

=

Examples:
∂R2 = S1,

∂H2 = S1,

∂Tn≥3 = C Cantor space,

X = X1 × X2 ⇒ ∂X = ∂X1 ∗ ∂X2

X = Tn≥3 × Tm≥3 ⇒ ∂X = C ∗ C

C C

Cone topology of the visual boundary
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X hyperbolic space, ∂GromX is defined similarly

Gromov boundary of hyperbolic groups

If G

X CAT(0) and hyperbolic⇒ ∂GromX = ∂X .

then ∂GromX = ∂GromY .
X hyperbolic

Y hyperbolic

acts geom.

Theorem (Gromov):

acts geom.

Corollary: If G is hyperbolic, then ∂G := ∂X is well defined.

some space on which G acts geometrically
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If G

acts geom.

Theorem (Gromov):

acts geom.

Theorem (Croke, Kleiner 00): ∃G and CAT(0) spaces X , Y so that

If G and ∂X 6= ∂Y .
X

Y

acts geom.

acts geom.

G has well-defined
Gromov boundary

G does not have
well-defined
visual boundary

Question: For which groups is the visual boundary well-defined?

If G then ∂GromX = ∂GromY .
X hyp.

Y hyp.
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Boundary rigidity

If G implies that ∂X = ∂Y .
X CAT(0)

Y CAT(0)

acts geom.

Definition (boundary rigidity): A CAT(0) group G is boundary rigid if

acts geom.

Examples of boundary rigid groups:

G has well-defined
visual boundary

G = H × Zn where H is hyperbolic (Bowers, Ruane 96)

G = H1 × H2 where H1, H2 are hyperbolic (Ruane 99)

G = H1 × H2 where H1, H2 are boundary rigid (Hosaka 2003)

G acts geom. on a CAT(0) space that is relatively hyperbolic
with respect to a family of flats. (Hruska–Kleiner 2005)
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Lattices in products of trees

Definition: A group G is a lattice in Tn × Tm if G acts geom. on Tn × Tm.

regular trees,
deg≥ 3

A lattice G is
reducible if G is virtually a direct product of 2 free groups

irreducible otherwise.

The product structure of Tn × Tm is not transferred to the group G;

G does not act on the factors Tn and Tm properly!

first example of a simple CAT(0) group
Burger–Mozes 97

Theorem: There exist irreducible lattices!
blubblaBurger, Mozes, Wise
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Tn × Tm has a single orbit of vertices.

In particular, ∂G = C ∗ C.
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Tn × Tm X CAT(0)

geometrically
freely

vertex-transitively
G

dim(∂(Tn × Tm)) = 1 dim(∂X ) = 1

∃a, b ∈ G s.t.
〈a, b〉 ∼= Z2

⇒

F ⊆ X flat

convex

Geoghegan,

freely
vertex-transitively ⇒Wise

b
a

blub

blub

Ontaneda
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Starting point:

G

dim(∂X ) = 1

F ⊆ X flat

X CAT(0)
geom.

convex

Proof sketch of Claim 1

blub

blub

a

bF

∃a, b ∈ G s.t.
〈a, b〉 ∼= Z2
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Definition (Tits boundary): Let X CAT(0).
∂T (X ) := (∂X , dT ) is the Tits boundary of X .

Tits distance

Proof sketch of Claim 1

Strategy: Use Dynamics on Tits boundaries (Guralnik, Swenson, Ricks)

π
2

∂TR2 = S1R2

π
2
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always
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Classical dynamics on boundaries G acts on X ⇒ G acts on ∂X .

R2

a
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green rays are in
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Classical dynamics on boundaries G acts on X ⇒ G acts on ∂X .

R2

a

a acts on ∂R2 trivially!
H2

a

a

a− a+ a− a+

aγ̄ = γ̄ for all γ̄ ∈ ∂X

green rays are in
same equivalence class

a rotates
boundary points
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Proof sketch of Claim 1

Classical dynamics on boundaries G acts on X ⇒ G acts on ∂X .
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= set of ultrafilters on G
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∃H < G, H ∼= Zd+1.
Then ∃ (d + 1)-flat F ⊆ X and ω ∈ βG so that

F is H-invariant,
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Starting point:

Tn × Tm X CAT(0)

geometrically
freely

vertex-transitively
G

dim(∂(Tn × Tm)) = 1 dim(∂X ) = 1

∃a, b ∈ G s.t.
〈a, b〉 ∼= Z2

⇒

F ⊆ X flat

convex

Geoghegan,

freely
vertex-transitively ⇒Wise

b
a

blub

blub

Ontaneda
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blub

blub

a− a+

Tω

Now, apply a splitting criterion of Ricks (2020)!

⇒ ∂T F is an attracting top-dimensional sphere!

a

b

∂T F ⊆ ∂T X

∃a, b ∈ G s.t.
〈a, b〉 ∼= Z2
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Thank you for your attention! a− a+

Tω

a

b

∂T F ⊆ ∂T X
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Definition (Tits boundary): Let X CAT(0).
∂T (X ) := (∂X , dT ) is the Tits boundary of X .

Tits distance:

Tits distance:

Proof sketch of Claim 1
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π
∂T (tree) = discrete space
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R2

H2

tree T

X1 × X2

space X ∂X ∂T X

C
∂X1 ∗ ∂X2 ∂T X1 ∗ ∂T X2

discrete

discrete

always
compact

rarely
compact

Why do we work with Tits boundaries?
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