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The projective plane over Mk(F )

Let F be a field and X := F 3k for some 1 ≤ k ∈ N.
Put

P := {P ≤F X | dimF P = k} set of points,

L := {L ≤F X | dimF L = 2k} set of lines.

For any two points P 6= Q there is a line L containing both and
the line L is unique if L = P + Q.

For any two lines L 6= M there is a point P contained in both and
the point P is unique if P = L ∩M.

For k = 1 we obtain the projective plane P2(F ) over F . For
arbitrary k we obtain a point-line geometry that can be interpreted
as the projective plane over the ring Mk(F ).
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Projective planes over unital associative rings

Goal: We want to define the projective plane P2(R) for an
arbitrary unital associative ring R.

Idea: Let X = R3 be the free module of rank 3 over R and define
the points (lines) as the free submodules of rank 1 (2).

For arbitrary rings R this can yield to rather wild point-line
geometries that one does not want to call projective planes. But
for certain classes of rings (local, semi-simple) one obtains
meaningful structures.

Projective planes over rings were first considered by Segre (1911,
for the dual numbers R = R[ε]) and later by various other people
(e.g. Hjelmslev, Klingenberg) during the 20th century.
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Veldkamp planes

In 1981 Veldkamp observed that the class of rings for which it is
possible to develop a meaningful projective geometry is precisely
the class of rings of stable rank 2 (a notion from K -theory).

He gave purely combinatorial axioms for point-line geometries that
are now known as Veldkamp planes. The standard examples are
the projective planes P2(R) where R is a unital, associative ring of
stable rank 2.

Theorem (Veldkamp, 1981): A Veldkamp plane ist Desarguesian
if and only if it is the projective plane over a ring of stable rank 2.
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Rings of stable rank 2
Let R be a unital associative ring, R× the group of units in R and

U+ := {
(

1 λ
0 1

)
| λ ∈ R} ≤ Gl2(R),

U− := {
(

1 0
λ 1

)
| λ ∈ R} ≤ GL2(R),

H := {
(
λ 0
0 λ−1

)
| λ ∈ R×} ≤ GL2(R).

Definition: The ring R is of stable rank 2 (or just stable) if and
only if

SL2(R) := 〈U+,U−〉 = U−U+U−H.

Observation: Let
M := {m ∈ U−U+U− | Um

+ = U− and Um
− = U+}, then

U]
+ := {u ∈ U+ | M ∩ U−uU− 6= ∅} = {

(
1 λ
0 1

)
| λ ∈ R×}.
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Notation for graphs

A (simplicial) graph is a pair Γ = (V ,E ) where V is a set (of
vertices) and E ⊆

(V
2

)
(of edges).

For v ∈ V the set of its neighbors is denoted by Γv .

A path of length k is a sequence such that {vi−1, vi} ∈ E and
vi−1 6= vi+1 for 1 ≤ i ≤ k .

A circuit is a path γ = (v0, v1, . . . , vk) with k ≥ 3 and v0 = vk .
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Generalized polygons

Let 2 ≤ n ∈ N. A generalized n-gon is graph Γ such that:

GP1 Γ is bipartite and connected;

GP2 for 1 ≤ k < n and each k-path α = (v0, v1, . . . , vk), the path
α is the unique path from v0 to vk of length at most k;

GP3 every (n + 1)-path is contained in a 2n-circuit.

Remark: Generalized 3-gons are precisely the incidence graphs of
projective planes.
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Local opposition relations in P2(Mk(F ))

Let F be a field, X := F 3k for some 1 ≤ k ∈ N and

P := {P ≤F X | dimF P = k},L := {L ≤F X | dimF L = 2k}.

Set Γ := (V ,E ) where

V := P ∪ L,E := {{P, L} | P ∈ P, L ∈ L,P ⊆ L}.

For P ∈ P define the binary relation ≡P on ΓP

L ≡P M :⇔ L ∩M = P.

For L ∈ L define the binary relation ≡L on ΓL

P ≡L Q :⇔ P + Q = L.

For v ∈ V the relation ≡v is called the local opposition relation at
v . The triple (V ,E , (≡v )v∈V ) is a Veldkamp graph.
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Opposition relations

A binary relation ≡ on a set X is called an opposition relation if it
is symmetric and anti-reflexive.

Examples: B = (C, δ) building of spherical type (W ,S) and
ρ ∈W the longest element in (W ,S).

c ≡ d :⇔ δ(c , d) = ρ is an opposition relation on C.

For J ⊆ S such that ρJρ = J one has an opposition relation on the
set of all J-residues of B in a similar fashion.

As each J-residue R of B is a building of type (〈J〉, J), the previous
yields a (local) opposition relations on the set of chambers of R
(set of K -residues contained in R with suitably chosen K ).
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Opposition relations

Let ≡ be an opposition relation on the set X .

The opposition relation is called trivial if x ≡ y ⇔ x 6= y for all
x , y ∈ X .

The opposition relation is called k-plump for some k ∈ N if for any
x1, x2, . . . , xk ∈ X there exists x ∈ X such that x ≡ xi for
1 ≤ i ≤ k .

stable := 2-plump

Remark: If B is a spherical building defined over a field F , then
the local opposition relations from the previous slide are |F |-plump.
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Veldkamp polygons

A Veldkamp graph is a triple (V ,E , (≡v )v∈V ) such that
Γ = (V ,E ) is a graph and ≡v is a stable opposition relation on Γv

for each v ∈ V .

A k-path γ = (v0, v1, . . . , vk) in a Veldkamp graph Γ is called
straight, if vi−1 ≡vi vi+1 for all 1 ≤ i ≤ k − 1.

Definition: Let 2 ≤ n ∈ N. A Veldkamp n-gon is a Veldkamp
graph Γ such that:

VP1 Γ is bipartite and connected;

VP2 for 1 ≤ k < n and each straight k-path α = (v0, v1, . . . , vk),
the path α is the unique straight path from v0 to vk of length
at most k;

VP3 every straight (n + 1)-path is contained in a straight
2n-circuit.
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Examples and remarks

The Veldkamp triangles (i.e 3-gons) are precisely the incidence
graphs of Veldkamp planes.

A Veldkamp n-gon is a generalized n-gon if and only if all its local
opposition relations are trivial.

Let S = (P,L) be a non-degenerate polar space of rank at least 2.
Then the incidence graph (on points and lines) is a Veldkamp
quadrangle.

Further interesting examples arise from foldings of spherical
buildings.

These are dihedral subgroups of finite Coxeter groups, that are
isometrically embedded.
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J-compatible subsets of Coxeter groups

Let (W ,S) be a Coxeter system and for w ∈W set

S+(w) := {s ∈ S | `(ws) = `(w) + 1},S−(w) := S \ S+(w).

Definition: Let J ⊆ S .

An element w ∈W is J-compatible if J ⊆ S+(w) or J ⊆ S−(w).

A subset X of W is J-compatible if each x ∈ X is J-compatible.
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Foldings of spherical Coxeter systems

Let (W ,S) be a spherical Coxeter system and for each J ⊆ S let
ρJ denote the longest element of (〈J〉, J).

Let J,K ⊆ S be such that J 6= ∅ 6= K and J ∩ K = ∅. Put

A := S \ (J ∪ K ), rJ := ρJ∪A and rK := ρK∪A.

Then the pair (J,K ) is called a folding of (W ,S) if the following
hold:

Fo1 [rJ , ρA] = 1 = [rK , ρA];

Fo2 〈rJ , rK 〉 is J-compatible and K -compatible.

The gonality of a folding (J,K ) is the order of rJ rK .
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Examples

({k}, {2k}) is a folding of gonality 3 of A3k−1.

For n ≥ 3 the pair ({1, n}, {2, n − 1}) is a folding of gonality 4 of
An.

The pair ({1}, {2}) is a folding of gonality 4 of Cn for n ≥ 2 and of
Dn for n ≥ 4.

The pair ({2}, {1, 3} is a folding of gonality 6 of Cn for n ≥ 3 and
of Dn for n ≥ 5.

Tits indices of relative rank 2 provide examples of foldings.

The bipartite partition of an irreducible spherical diagram is a
folding of gonality h (Coxeter number).
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Veldkamp polygons from foldings of spherical buildings

Let (W ,S) be a spherical Coxeter system, (J,K ) a folding of
(W ,S) of gonality n and ∆ a building of type (W ,S) (viewed as a
simplicial complex).

Let SJ (resp. SK ) be the set of simplices of type J (resp. K ) and
put

V := SJ∪SK ,E := {{A,B} ∈
(
V

2

)
| A∪B simplex of type J∪K}.

At each vertex v ∈ V there is a natural oppostition relation ≡v of
Γv inherited from ∆.

Observation 1: Γ = (V ,E , (≡v )v∈V ) is a Veldkamp n-gon.

Observation 2: If ∆ is Moufang, then Γ is Moufang.
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Tits polygons

Let Γ = (V ,E , (≡v )v∈V ) be a Veldkamp n-gon.

A root of Γ is a straight n-path and an apartment of Γ is a straight
2n-circuit.

Observation: For each root α the corresponding root group Uα
acts freely on the apartments containing α.

Definition: Γ is called a Tits polygon if Uα is transitive on the
apartements containing α for each root α.
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Tits triangles

Theorem: A 5-plump Tits triangle is isomorphic to the projective
plane P2(A) for some stable unital alternative ring.

Remark: This improves and unifies results of Veldkamp on
Veldkamp planes and of Faulkner on A2-graded groups from the
1980s.
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Classifying Tits polygons

Plan: Follow the strategy of Tits and Weiss in their classification
of Moufang polygons

Question: What about n = 3, 4, 6 and 8?

Fact: There are Tits n-gons for all 3 ≤ n ∈ N (via foldings of
An−1(F )).

Goal: Rule them out by a suitable condition.
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Sharp Tits polygons

Remark: For each root group Uα we can define the set U]
α ⊆ Uα

of its invertible elements.

Definition: Let Γ be a Tits polygon, Σ an apartment of Γ and T
the pointwise stabilizer of Σ in Aut(Γ).
Then Γ is called sharp if the following condition is statisfied for
each root α contained in Σ:

Sh If 1 6= W is an H-invariant, normal subgroup of Uα, then

U]
α ∩W 6= ∅.

Remark: For an stable unital associative ring R we have

P2(R) is sharp ⇔ R is simple .
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On the classification of sharp Tits polygons

For a sharp Tits n-gon Γ the following holds:

1. Γ sharp ⇒ n ∈ {3, 4, 6, 8};

2. n=3: Γ = P2(A) for a simple, stable unital alternative ring A;

3. n=6: Non-degenerate cubic norm forms;

4. n=8: Tits octagons are precisely the Moufang octagons;

5. n=4 exceptional: Quadrangular algebras;

6. n=4 non-exceptional: in progress.

Remark: With a few obvious exceptions, all examples is provided
by a folding of a higher rank building, where the folding is
associated with a Tits index of relative rank 2.
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Concluding Remarks

A question: Do all Tits n-gons for n 6∈ {3, 4} arise from foldings
of spherical buildings?

Our original motivation: Each exceptional Moufang set can be
realized as fixed point set of a Galois involution on a Tits
quadrangle or a Tits hexagon.

Root graded groups: Let 3 ≤ n ∈ N and (W ,S) = (D2n, {s, t})

Moufang n-gons ⇔ RGD-systems of type (W ,S),

Tits n-gons ⇔ groups with a stable root grading of type (W , S).

Veldkamp buildings: The definition of a Veldkamp polygon can
be easily modified to define Veldkamp buildings of type (W ,S).
Presumably one can classify the irreducible spherical buildings of
rank at least 3.
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