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Motivation: Moufang twin trees

De�nition

Let ∆+,∆− be two thick trees.

(1) A symmetric map
δ : V (∆+)× V (∆−) ∪ V (∆+)× V (∆−)→ N is called a
codistance if

(i) For ε ∈ {+,−}, xε ∈ V (∆ε) and y−ε, z−ε ∈ V (∆−ε) adjacent

we have δ(xε, y−ε) = δ(xε, z−ε)± 1.

(ii) If ε ∈ {+,−}, xε ∈ V (∆ε) and y−ε ∈ V (∆−ε) with

δ(xε, y−ε) > 0, then there exists a unique z−ε ∈ V (∆−ε)
adjacent to y−ε such that δ(xε, z−ε) = δ(xε, y−ε) + 1.

(2) We call (x+, y−) ∈ V (∆+)× V (∆−) opposite if

δ(x+, y−) = 0.

(3) If δ is a codistance for ∆+ and ∆−, then (∆+,∆−, δ) is called

a twin tree.



Motivation: Moufang twin trees

De�nition

Let ∆ = (∆+,∆−, δ) be a twin tree.

Let αε = (xε0, x
ε
1, . . .) be a half-apartment (one-direction

in�nite path) in ∆ε for ε ∈ {+,−}. Then (α+, α−) is called a

twin root if δ(x+
i , x

−
j ) = i + j for all i , j ≥ 0.

Let Σε = (xεn)n∈Z be an apartment (two-direction in�nite

path) in ∆ε for ε ∈ {+,−}. Then (Σ+,Σ−) is called a twin

apartment if δ(x+
i , x

−
j ) = |i − j | for all i , j ∈ Z.

Let α = (α+, α−) be a twin root with αε = (xεn)n≥0 for

ε ∈ {+,−}. Set Uα := {g ∈ Aut∆ | yg = y for all y adjacent

to some xεn for some n > 0}. Then Uα is called the root group

associated to α.

∆ is called Moufang if for every twin root α the root group Uα
acts transitively on the set of twin apartments containing α.



Example

Bruhat-Tits trees for Chevalley groups of relative rank one

over k((t)) resp. k((t−1)), where k is a �eld.

Twin trees for Kac-Moody-groups.

Lot of other examples.

Tits: There are uncountably many non-isomorphic twin trees

of valency 3 (and also for every other valency).



From Moufang twin trees to Z-systems

Let ∆ = (∆+,∆−, δ) be a Moufang twin tree, G ≤ Aut∆
containing all root groups and Σ = (Σ+,Σ−) a twin apartment

with Σε = (xεn)n∈Z and δ(x+
n , x

−
m ) = |n −m| for all n,m ∈ Z. Then

αn := (α+
n , α

−
n ) with α+

n = (x+
i )i≥n and α−n = (x−i )i≤n is a twin

root for all n ∈ Z. Set Un := Uαn and U := 〈Un | n ∈ Z〉 (the
unipotent horocyclic group). Then we have:

(i) [Um,Un] ≤ Um+1 . . .Un−1 for all m < n ∈ Z.
(ii) For every u ∈ U∗ there are uniquely determined m < n ∈ Z,

ui ∈ Ui for m ≤ i ≤ n such that u = um . . . un and um, un 6= 1.

(iii) There is an automorphism σ ∈ GΣ such that Uσn = Un+2 for

all n ∈ Z.
(iv) If T ≤ Aut∆ is the group �xing Σ pointwise, then

T ≤ NG (Un) for all n ∈ Z.
This motivates the de�nition of a Z-system



Z-systems

De�nition

Let X be a group, (Xn)n∈Z be a family of subgroups of X ,

σ ∈ Aut(X ) and T ≤ Aut(X ) with T σ = T .

(1)
(
X , (Xn)n∈Z, σ,T

)
is called a Z-system if

(i) [Xm,Xn] ≤ Xm+1 . . .Xn−1 for all m < n ∈ Z.
(ii) For every x ∈ X ∗ there are uniquely determined m < n ∈ Z,

xi ∈ Xi for m ≤ i ≤ n such that x = xm . . . xn and xm, xn 6= 1.

(iii) Xσ
n

= Xn+2 for all n ∈ Z.
(iv) X h

n
= Xn for all h ∈ T and n ∈ Z.

(2) A Z-system
(
X , (Xn)n∈Z, σ,T

)
is called irreducible if T acts

irreducibly on Xn for all n ∈ Z.
(3) A Z-system

(
X , (Xn)n∈Z, σ,T

)
is called nilpotent (resp.

abelian, etc.) if Xn is nilpotent (resp. abelian etc.) for all

n ∈ Z.



Remark

(1) The map σ is called a shift of lenght 2, the group T the torus.

(2) An irreducible, nilpotent Z-system is abelian.

(3) Not every Z-systems comes from a Moufang twin tree. In a

Moufang twin tree, every root groups Un are isomorphic to a

root group of a Moufang set. The proper Moufang sets are

conjectured to have nilpotent root groups. Therefore, it is

reasonable to focus on nilpotent Z-system.



Example

(i) Let G := SL2(k[t, t−1]),

U :=

{(
1 0

f 1

)
; f ∈ k[t, t−1]

}
,

Un :=

{(
1 0

a · tn 1

)
; a ∈ k

}
for n ∈ Z,

T :=

{(
a 0

0 a−1

)
; a ∈ k∗

}
,

σ :=

(
t 0

0 t−1

)
.

This Z-system comes from the Moufang twin tree of G . It is

irreducible unless k is a non-perfect �eld of characteristic 2.

We have [Un,Um] = 1 for all n,m ∈ Z, hence U is abelian.



Example

(ii) Let k be a �eld with chark 6= 2, K := k(t), ∗ ∈ Aut(K) with

a∗ = a for all a ∈ k and t∗ = −t. Consider the following

subgroups of SL3(k[t, t−1]):

U :=


 1 0 0

a 1 0

b −a∗ 1

 ; a, b ∈ k[t, t−1],N(a) + Tr(b) = 0

 ,

U2n+1 :=


 1 0 0

0 1 0

b · t2n+1 0 1

 ; b ∈ k

 and

U2n :=


 1 0 0

a · tn 1 0
a2

2 · t
2n a · (−t)n 1

 ; a ∈ k

 for n ∈ Z.



Example

This Z-systems comes from the twin tree for SU3(k[t, t−1]). We

have [U4n+2,U4m] = U2n+2m+1 for all n,m ∈ Z and [Uk ,U`] = 1

for all other integers k and `. Hence we have

Z (U) = U ′ = 〈U2n+1 | n ∈ Z〉, thus U is nilpotent of class 2.



Example

(iii) Let A and B be two arbitrary groups. Set

X := {x = (xn)n∈Z | x2n ∈ A and x2n+1 ∈ B for all n ∈ Z}.
Xn := {x ∈ X | xi = 1 for all i 6= n},
σ : X → X : (xn)n∈Z 7→ (xn−2)n∈Z
Then

(
X , (Xn)n∈Z, σ,T

)
is Z-system.



Theorem

(G., Horn, Mühlherr 2016) Let
(
X , (Xn)n∈Z, σ,T ) be a Z-system

such that Xn has prime order for all n ∈ Z. Then X is nilpotent of

class at most 2.

Remark

(1) The proof contains a gap which we were able to �x.

(2) The theorem also follows by a recent result of Glöckner and

Willis about contraction groups.

(3) We used another de�nition of Z-system for this theorem

(without T ).

(4) The proof relies on the fact that Xn has no proper subgroup.

Idea: Consider Z-systems such that Xn has no non-trivial

T -invariant subgroup, i.e. irreducible Z-systems.



De�nition

Let
(
X , (Xn)n∈Z, σ,T

)
be a Z-system

(i) For m ≤ n ∈ Z ∪ {∞,−∞} set Xm,n := 〈Xi | m ≤ i ≤ n〉.
(ii) For x ∈ X ∗ set µ(x) := max{m ∈ Z | x ∈ Xm,∞},

ν(x) := min{n ∈ Z | x ∈ X−∞,n} and ω(x) := n −m ≥ 0.

(iii) Call x ∈ X ∗ even (resp. odd) if µ(x) is even (resp. odd).

(iv) A subgroup Y ≤ X is called shift-invariant if Y τ = Y for all

τ ∈ 〈T , σ〉.
(v) We say that a subgroup Y of X has �nite T -index if there

exists a �nite subset M of X with X = 〈Y ∪MT 〉. Otherwise,
Y has in�nite T -index.



Shift-invariant subgroups

Remark

(1) If Y ,Z ≤ X are shift-invariant subgroups, then 〈Y ,Z 〉,Y ∩ Z

and [Y ,Z ] are also shift-invariant.

(2) If Y ≤ X is shift-invariant and Z is characteristic in Y , then Z

is also shift-invariant. In particular, every characteristic

subgroup of X is shift-invariant.

(3) If Xn is �nite for all n ∈ Z, then Y ≤ X has �nite T -index if

and only if |X : Y | <∞.



Shift-invariant subgroups

From now on,
(
X , (Xn)n∈Z, σ,T

)
is irreducible and nilpotent

(hence abelian).

Theorem

Let 1 6= Y E X be shift-invariant.

(i) Y is of �nite T -index if and only if Y contains both odd and

even elements.

(ii) If Y is of in�nite T -index and y ∈ Y ∗ with ω(y) minimal,

then Y = 〈y 〈T ,σ〉〉.
(iii) If Y is of �nite T -index and x , y ∈ Y ∗ even resp. odd with

ω(x), ω(y) minimal, then Y = 〈x 〈T ,σ〉 ∪ y 〈T ,σ〉〉.



Shift-invariant subgroups

Theorem

Let 1 6= Y E X be shift-invariant. Then Y ′ < Y .

Theorem

X ′ has in�nite T -index.

Theorem

Let Y E X be shift-invariant and of in�nite T -index. Then

[Y ,X ] =
[
[Y ,X ],X

]
.

Theorem

Let Y E X be shift-invariant with [Y ,X ] = Y . Then Y is abelian.



Shifts of length 1

Corollary

If we have a shift of length 1, i.e. an automorphism τ of X with

T τ = T and X τ
n = Xn+1 for all n ∈ Z, then X is abelian.

Proof.

Since X ′ is shift-invariant and of in�nite T -index, X ′ cannot
contain both odd and even elements. But τ normalises X ′ and
interchanges the sets of even and odd elements. Hence X ′ = 1.



Main result

Theorem

Let
(
X , (Xn)n∈Z, σ,T

)
be an irreducible, nilpotent Z-system. Then

X is nilpotent of class at most 2.

Proof.

Consider the shift-invariant normal subgroup Y := [X ′,X ]. Then Y

is abelian. X acts on the abelian group Y by conjugation. We have

[Y ,X ] = Y . If Y 6= 1, then we �nd Z E Y such that X acts

trivially on Y /Z , contradiction. Hence Y = 1, so X ′ ≤ Z (X ).



Conjecture

Let
(
X , (Xn)n∈Z, σ,T

)
be a nilpotent Z-system.

(1) X is nilpotent.

(2) There is a function f : N2 → N such that the class of X is

bounded by f (n0, n1), where ni is the class of Xi for i = 0, 1.
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