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Can we tell the difference between
a scarf and a sweater
knowing only a part of the knitting?
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CONVENTIONS

» Two vertices linked by an edge are at distance 1.
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Conventions

CONVENTIONS

» Two vertices linked by an edge are at distance 1.
— It induces a distance on the entire graph.

» Bx(x,R) := {vertices at distance R from x}.

Exemple

OB(x,2) X

4/28



[ — Local-to-Global rigidity



I — LG-rigidity

I.1 — Graphs locally the same
;

1.1 — GRAPHS LOCALLY THE SAME

Motivations
» Every regular graph of degree d is covered by the d-regular
tree.

6/28



I — LG-rigidity

I.1 — Graphs locally the same
;

1.1 — GRAPHS LOCALLY THE SAME

Motivations
» Every regular graph of degree d is covered by the d-regular
tree.

> A complete Riemannian manifold which is locally isometric to
a symmetric space is covered by a symmetric space.

6/28



I — LG-rigidity

I.1 — Graphs locally the same
;

1.1 — GRAPHS LOCALLY THE SAME

Motivations
» Every regular graph of degree d is covered by the d-regular
tree.

> A complete Riemannian manifold which is locally isometric to
a symmetric space is covered by a symmetric space.

Let R > 0 and let X,Y be two graphs.

6/28



I — LG-rigidity

I.1 — Graphs locally the same
;

1.1 — GRAPHS LOCALLY THE SAME

Motivations
» Every regular graph of degree d is covered by the d-regular
tree.

> A complete Riemannian manifold which is locally isometric to
a symmetric space is covered by a symmetric space.

Let R > 0 and let X,Y be two graphs.
Definition. We say that X is R-locally Y, if:

(Vx € X) (Jy € Y) : Bx(x,R) isometric to By(y,R).
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1.2 — Local-to-Global Rigidity
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1.2 — LOCAL-TO-GLOBAL RIGIDITY

Definition.

» We say that p: X = Y is a covering if p is surjective and if:

bijective
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I — LG-rigidity

1.2 — Local-to-Global Rigidity
;

1.2 — LOCAL-TO-GLOBAL RIGIDITY

Definition.

» We say that p: X — Y is a covering if p is surjective and if:

bijective

vx € X p:B(x,1) — B(p(x),1).
Example

{z 7/6Z,
p:

m —m mod 6.
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I — LG-rigidity

1.2 — Local-to-Global Rigidity
;

1.2 — LOCAL-TO-GLOBAL RIGIDITY
Definition.

» Let R > 0. We say that X is LG-rigid at scale R if every
graph that is R-locally X is covered by X.

Interlude: Knitted Interpretation
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1.3 — EXAMPLES AND NON-EXAMPLES

Example (Benjamini-Ellis, ‘16)
For all m > 0, the Cayley graph (Z™,{+eq,...,+eq}) is LG-rigid
at scale 3.

Example (de la Salle-Tessera, ‘19)
If X has a cocompact isometry group and is quasi-isometric to a
tree then X is LG-rigid.

Example (de la Salle-Tessera, '16) If car(K) = 0 and n # 3 then
the Bruhat-Tits building of PSL,,(K) is LG-rigid.
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Non-examples (De la Salle-Tessera)

» 2 xFy xZ/27 admits a non-LG-rigid Cayley graph.
— Torsion

» The Bruhat-Tits building of PSL,, ([Fp((t))> is not LG-rigid.

» Let d > 3. There exists a torsion-free cocompact lattice in
PSLqa (Fp((t))) that is not LG-rigid.
— Characteristic p.
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II.1 — Context and motivation

II.1 — CONTEXT AND MOTIVATIONS

» Two Cayley graphs of a same group are q.i.

» 2 x [, x Z/27 admits a LG-rigid Cayley graph and a
non-LG-rigid one.

— Hence LG-rigidity is not stable by q.i.
But...

» We saw that a cocompact graph q.i. to a tree is LG-rigid.
» The building of PSL,(K) is a regular tree.

— What about quasi-buildings of higher dimension?
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II — From buildings to quasi-buildings
I1.2 — Quasi-buildings
:

I1.2 — QUASI-BUILDINGS: RIGIDITY

Theorem. [E., '20] Let K be a non-Archimedean local
field s.t. char(K) =0 and X be the building of PSL,, (K)
with n # 3. If X is a graph that is quasi-isometric to X
and sufficiently friendly', then X is LG-rigid.

T Isom(X) is transitive and embedds in Isom(X) s.t. the
quasi-isometry is Isom(X)-equivariant and s.t. Isom(X) is of

finite index in Isom(X).

Example Torsion-free lattices of PSL,,(K) are quasi-isometric to

the building and friendly.
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» The vertices can be colored such that two adjacent
vertices have different colors.

Example (for n=2)
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III — Idea of the proof
I11.1 — Print

III.1 — PRINTS

Definition. Let ¢ be a vertex color.

If x vertex of the building, its print of color c is the set of

vertices of B(x, 1) of color c.

Example in dim. 2

Y2

Y1

Ys3
B(x, 1)

Y2
@

Qv

@
Y3

Print of color blue
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III1.1 — Print

III.1 — PRINTS

Property.[E, "20] Let ¢ be a color of vertices.
A vertex of the building is uniquely determined by its
print of color c.

Example In the last example x is uniquely determined by the
data {y1,y2,ys}.

We only need a partial local information to reconstruct
the building.
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X
R-loc i
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» Step 1 Reconstruct (locally) the building;

R-loc

X
1 L Covering
Y

9

Use of the building’s LG-Rigidity

19/28



III — Idea of the proof

II1.2 — Proof: Overview

KEY IDEA USE THE BUILDING’S RIGIDITY

» Step 1 Reconstruct (locally) the building;
» Step 2 Pullback the covering.

R-loc

<o X

19/28



III — Idea of the proof

II1.2 — Proof: Overview

KEY IDEA USE THE BUILDING’S RIGIDITY

» Step 1 Reconstruct (locally) the building;
» Step 2 Pullback the covering.

“Pullback” the covering by X to X

19/28



III — Idea of the proof

II1.2 — Proof: Overview

KEY IDEA USE THE BUILDING’S RIGIDITY

» Step 1 Reconstruct (locally) the building;
» Step 2 Pullback the covering.

|=

Covering:

ot

<o

9

“Pullback” the covering by X to X
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Definition of edges in Y

General Idea “Fabric” of prints and vertices Y on which we
“stitch” the edges of X.

More precisely we consider the set of vertices in Y contained
in a ball of radius R we “read” on X how to link the vertices.

20/28



III — Idea of the proof

I11.3 — Embroidery
;

III.3 — RECONSTRUCTING THE BUILDING’S VERTICES

21/28



III — Idea of the proof

I11.3 — Embroidery
;

III.3 — RECONSTRUCTING THE BUILDING’S VERTICES

X >
f
Y >

21/28



III — Idea of the proof

I11.3 — Embroidery
;

III.3 — RECONSTRUCTING THE BUILDING’S VERTICES

21/28



III — Idea of the proof

I11.3 — Embroidery
;

II1.3 — RECONSTRUCTING THE BUILDING’S VERTICES

X
vertices
q
X — — AW

21 /28



III — Idea of the proof

I11.3 — Embroidery
;

III.3 — RECONSTRUCTING THE BUILDING’S VERTICES

X
— i
q
X ) —_— > a(X)
f
Y ) > V(Y)
Y

21/28



III — Idea of the proof

I11.3 — Embroidery
;

III.3 — RECONSTRUCTING THE BUILDING’S VERTICES

X
X S—
S Brown,
q
X ) —_— > a(X)
f
Y ) > V(Y)
Y

21/28



III — Idea of the proof

I11.3 — Embroidery
;

III.3 — RECONSTRUCTING THE BUILDING’S VERTICES

X
= Srown
X d & (X)
> P q
f
Y D D V(Y)
y

21/28



III — Idea of the proof

I11.3 — Embroidery
;

III.3 — RECONSTRUCTING THE BUILDING’S VERTICES

X

x -
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Loc. Geom.
= Global

Conseqc.
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Embroidery
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Thank you
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attention!
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A.2 — EMBROIDERY: KEY LEMMA

The key lemma of de la Salle and Tessera allows us to:

» Show that the construction does not depend of the choice
of f.

» Extend the construction made on ball of radius R along the

paths.

» Show that this construction does not depend on the path
taken.

— The edges are defined on the entire graph Y.
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LocAL MAPS & PLANISPHERE

Fix y € Y and f : By(y,R) — Bx(f(y),R).

Local isometry from Y to X

Oe(y) =qfly)  ¢e(P(x)) =x.

— Extends to a global isometry from Y to X denoted by ty.

To each local map f corresponds a planisphere q 'tk

centered in y.
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OVERVIEW

BDC (qf(9)> T)
b =r

B‘é (U,T)
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Mapmaking

OVERVIEW
X ' x Bx (af(y), )
,wf dr =t
Y —Y By(y, 1)

K

Goal: Show that q~ 'tk is an isometry from Y to X.
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1

» The map q~ 'k is bijective from Y to X.

K L -1
Y — V(Y) —5 blue vertices ., x

» Local isometry.

1

> On By(y,R) we have q~'vk(y’) = f(y').

— Isometry on By(y,R).
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» The map q~ 'k is bijective from Y to X.

K Lf . -!
Y — V(Y) — blue vertices ., x
» Local isometry.

"uk(y) = fly).

» On By(y,R) we have q~
— Isometry on By(y,R).
» Transition maps are in PSL,(Qy)

LF1 lp € PSLH(QP)
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Ttk is bijective from Y to X.

K Lf . -!
Y — V(Y) — blue vertices ., x

» The map q—

» Local isometry.

"uk(y) = fly).

» On By(y,R) we have q~
— Isometry on By(y,R).

»> Transition maps are in PSL,(Qp).
t 'tp € PSLa(Qp).

»> Equivariance of q et spreading step by step.

= Global isometry.
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