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Divergence of geodesics

Let (X , d) be a one-ended geodesic metric space.

Let γ1, γ2 : [0,∞)→ X be geodesic rays with the same basepoint
γ1(0) = γ2(0) = x0.

Question
How fast do γ1 and γ2 move away from each other?

Definition (Gromov 1980s)

The divergence of γ1 and γ2 at time r is

div(γ1, γ2, r) := inf
p

length(p)

where the infimum is taken over all rectifiable paths p in
X\Ball(x0, r) connecting γ1(r) and γ2(r).
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Divergence of geodesics in Euclidean space

In Euclidean space, all pairs of geodesics diverge linearly.
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Divergence of geodesics in hyperbolic space

In hyperbolic space, all pairs of geodesics diverge exponentially.
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Divergence of geodesics in symmetric spaces

Examples

1. In Euclidean space, all pairs of geodesics diverge linearly.

2. In hyperbolic space, all pairs of geodesics diverge
exponentially.

Theorem (Gromov)

Let X be a symmetric space of noncompact type e.g.
SLn(R)/SOn(R). Then for all pairs of geodesics γ1, γ2 with
common basepoint, the function r 7→ div(γ1, γ2, r) is either linear
or exponential.

Gromov suggested that the same dichotomy should hold in all
CAT(0) spaces.
It doesn’t.
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Divergence for finitely generated groups
G finitely generated group with finite generating set S

X the Cayley graph of G w.r.t. S . Assume X is one-ended.

Definition (Gersten 1994)

The divergence of G is the function

divG (r) := sup
x ,y

(
inf
p

length(p)

)
where

I the sup is over all pairs of points x , y ∈ X at distance r from e

I the inf is over all paths p from x to y in X \ Ball(e, r).

G has linear divergence if divG (r) ' r , quadratic divergence if
divG (r) ' r2, etc, where

f � g ⇐⇒ ∃C > 0 s.t. f (r) ≤ Cg(Cr + C ) + Cr + C

These rates of divergence are quasi-isometry invariants (Gersten).
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Previous results on divergence

Contrary to Gromov’s expectation of linear or exponential
divergence only:

I quadratic divergence for certain free-by-cyclic groups [Gersten
1994]

I (geometric) 3-manifold groups have divergence either linear,
quadratic or exponential; quadratic ⇐⇒ graph manifold,
exponential ⇐⇒ hyperbolic piece [Gersten 1994,
Kapovich–Leeb 1998]

I mapping class groups and Teichmüller space have quadratic
divergence [Duchin–Rafi 2009]

I lattices in higher rank semisimple Lie groups conjectured to
have linear divergence; proved in some cases e.g. SL(n,Z)
[Drutu–Mozes–Sapir 2010]

I right-angled Artin groups have divergence linear, quadratic or
exponential [Abrams–Brady–Dani–Duchin–Young 2010,
Behrstock–Charney 2012]
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Previous results on divergence

Constructions of finitely presented CAT(0) groups with divergence:

I rd for all integers d ≥ 1 [Macura 2011, Behrstock–Drutu
2011]

I rα for α irrational and dense in [2,∞) [Brady–Tran 2020]

I rn log r for all integers n ≥ 1 [Brady–Tran 2020]
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Right-angled Coxeter groups

Γ finite simplicial graph with vertex set S

The right-angled Coxeter group (RACG) associated to Γ is

WΓ = 〈S | s2 = 1∀s ∈ S and (st)2 = 1 ⇐⇒ s and t are adjacent in Γ〉

equivalently

WΓ = 〈S | s2 = 1∀s ∈ S and st = ts ⇐⇒ s and t are adjacent in Γ〉
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Divergence in right-angled Coxeter groups

We consider WΓ such that

I Γ is triangle-free (simplifying assumption)

I WΓ is one-ended ⇐⇒ Γ has no separating vertices or edges
(special case of theorem of Davis)

Theorem 1 (Dani–T 2015)

1. WΓ has linear divergence ⇐⇒ Γ a join ⇐⇒ WΓ reducible.

2. WΓ has quadratic divergence if and only if Γ is CFS and is
not a join.
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Divergence in right-angled Coxeter groups

Theorem 2 (Dani–T 2015)

For all d ≥ 1, the group WΓd
has divergence rd .
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Subsequent results for RACGs

Behrstock, Falgas-Ravry, Hagen and Susse generalised our CFS
condition to all Γ.

Theorem (Behrstock–Caprace–Hagen–Sisto, Sisto, Levcovitz)

1. The divergence of WΓ is either exponential (⇐⇒ the group
is relatively hyperbolic) or bounded above by a polynomial
(⇐⇒ the group is thick).

2. WΓ has linear divergence ⇐⇒ Γ is a join.

3. WΓ has quadratic divergence ⇐⇒ Γ is CFS.

Levcovitz (2018) introduced the hypergraph index for a RACG.

Theorem (Levcovitz 2020)

WΓ has hypergraph index h ⇐⇒ WΓ has divergence rh+1.
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Divergence for general Coxeter groups

(W ,S) Coxeter system such that W is one-ended

Theorem 3 (Dani–Naqvi–Soroko–T 2021)

W has linear divergence ⇐⇒ (W ,S) = (W1,S1)× (W2,S2)
where either:

1. both W1 and W2 are infinite, or

2. W1 is finite and (W2, S2) is irreducible affine of rank ≥ 3

In all other cases, divW � r2.

Proof ingredients:

I General result of Kapovich–Leeb for locally compact CAT(0)
spaces

I For W other than in (1) and (2), and w ∈W a Coxeter
element, w∞ is a rank one geodesic (Caprace–Fujiwara)
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Hypergraph index for general Coxeter systems

Inductively define subsets of P(S):

Λ0 = {T ⊆ S |WT has linear divergence} ∪
{A× K |WA minimal nonspherical, WK spherical}

For i ≥ 0

I for T ,T ′ ∈ Λi , define T ∼ T ′ if ∃

T = T0,T1, . . . ,Tm = T ′ ⊂ Λi

such that WTj∩Tj+1
is nonspherical

I Λi+1 is union of ∼-equivalence classes in Λi .

Define hypergraph index h(W , S) = i if S ∈ Λi \ Λi−1, else
h(W ,S) =∞.
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Hypergraph index and divergence

Theorem 4 (Dani–Naqvi–Soroko–T 2021)

1. h =∞ ⇐⇒ W has exponential divergence ⇐⇒ W is
relatively hyperbolic

2. h = 0 ⇐⇒ W has linear divergence

3. If h = 1 then W has quadratic divergence

4. If 1 ≤ h <∞, then W has divergence bounded above by rh+1.

Conjecture

If 1 ≤ h <∞ then W has divergence bounded below by rh+1.
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Lower bound for divergence

Joint with Ignat Soroko, Dibyendu Roy.

I Candidate geodesic: γw = w∞ for w a Coxeter element

I Looking at r -avoidant paths from γw (r) to γw (−r)

I A wall is the fixed set of a reflection

I Estimate length of paths by counting “parallel” walls crossed

I First step: find “parallel” walls crossed by γw itself

I Use root system to determine intersections of walls
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Computation in type Ã2 (h = 0)
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Thank you for your attention.


