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Goal: Show boundary rigidity of lattices in products of trees

@ CAT(0) spaces and their boundaries
@ Lattices in products of trees

® Theorem with proof idea



CAT(0) spaces

All spaces in this talk are CAT(0) (if not said otherwise)




CAT(0) spaces

All spaces in this talk are CAT(0) (if not said otherwise)

Examples:
m R? H?, trees,



CAT(0) spaces

All spaces in this talk are CAT(0) (if not said otherwise)

Examples:
m R? H?, trees,

@ CAT(0) square complexes,




CAT(0) spaces

All spaces in this talk are CAT(0) (if not said otherwise)

Examples:
m R? H?, trees,

@ CAT(0) square complexes,
| X;, Xo CAT(0) = X; x Xo CAT(0)




CAT(0) spaces

All spaces in this talk are CAT(0) (if not said otherwise)

X RR?

A d/

Examples: A
m R? H?, trees,

@ CAT(0) square complexes, / v

m X, X, CAT(0) = X; x X, CAT(0)

daim(Xj) = diam(Xs) = co = each geodesic ray v lies in a flat!
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CAT(0) spaces

Example: T,, T, reqular trees = T, x T, CAT(0) square complex
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X complete CAT(0) space
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Cone topology of the visual boundary

X complete CAT(0) space, p € X
0X, =1{v |v:[0,00) — X geodesic ray, y(0) = p}

0X =0X,

Examples:

m JR* =5,

m OH* = S,

m J7, , = C Cantor space,

B X=X XXo=0X=0X;*x0Xs
W X=T, XTh,=0X=Cx*xC

n23 m23
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Gromov boundary of hyperbolic groups

X hyperbolic space, OgomX is defined similarly

X CAT(0) and hyperbolic = OgomX = 0X.

Theorem (Gromov):

acts geom.

™ X hyperbolic
fG
\/7 Y hyperbolic

acts geom.

I then aGromX —_ aGrom Y

Corollary: If G is hyperbolic, then 0G = 0X is well defined.

some space on which G acts geometrically
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Theorem (Gromov):

acts geom.

™ Xhyp. i
G has well-defined
f G\/' v v then Jgrom X = Jarom Y. N\ Gromov boundary
yp.
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Theorem (Croke, Kleiner 00): 4G and CAT(0) spaces X, Y so that

acts geom.

X G does not have
If G and 0X #0Y. N well-defined

N oV visual boundary

acts geom.

Question: For which groups is the visual boundary well-defined?
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Examples of boundary rigid groups:

® G =H x Z" where H is hyperbolic (Bowers, Ruane 96)

@ G =H; X H> where Hy, H, are hyperbolic (Ruane 99)

@ G =H; x H>where Hy, H, are boundary rigid (Hosaka 2003)

B G acts geom. on a CAT(0) space that is relatively hyperbolic
with respect to a family of flats. (Hruska—Kleiner 2005)
Goal: Lattices in products of trees are boundary rigid!
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Definition: A group G is a lattice in T, x T, if G acts geom.on T, X Tp,.

A lattice G is ‘Y’
@ reducible if Gis virtually a direct product of 2 free groups
regular trees,

m irreducible otherwise. /\; deg> 3

® The product structure of T, x T,, is not transferred to the group G;

B G does not act on the factors T, and T, properly!

Theorem: There exist irreducible lattices!
N_» Burger, Mozes, Wise

Burger—Mozes 97
Ao first example of a simple CAT(0) group
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Strategy: Use Dynamics onTits boundaries (Guralnik, Swenson, Ricks)

Definition (Tits boundary): Let X CAT(0).
07(X) = (0X, d7) is the Tits boundary of X.

Tits distance

7T

2
Rz ﬁ aTRZ _ S‘I T
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Classical dynamics on boundaries G acts on X = G acts on 0X.

a rotates a acts on JR? trivially! North-South-dynamics
boundary points R2 H2

\‘

green rays are in
same equivalence class

5 — v forall v € 9X da” —=a,
ay=yitoralvy c a”f/ n— 0o 2"

forally € 0X — {a"}
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Generalize dynamics on boundaries (Guralnik—-Swenson, 2013):

B G =Stone-Cech compactification orX
= set of ultrafilters on G Tw
GC PG

BG A\ Or X
w— TL 10X — 01X
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Suppose that
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Starting point:

geom.
G /4 X CAT(0)
a dimOX) =1 OrF C orX
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Now, apply a splitting criterion of Ricks (2020)!
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Thank you for your attention! a-
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Definition (Tits boundary): Let X CAT(0).
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