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Motivation and Introduction

Question: Given two topological groups L,G and a homomorphism
ϕ : L→ G ,

can we find conditions on the groups ensuring that ϕ
is continuous?
Partial answer: If G is a group from GGT and L is locally compact
Hausdorff, this seems to be possible in many cases.
Convention: G carries the discrete topology.
Goal for today:

Give an overview of the results.

Explain why GGT groups show up here.

Connection to Buildings.



Motivation and Introduction

Question: Given two topological groups L,G and a homomorphism
ϕ : L→ G , can we find conditions on the groups ensuring that ϕ
is continuous?

Partial answer: If G is a group from GGT and L is locally compact
Hausdorff, this seems to be possible in many cases.
Convention: G carries the discrete topology.
Goal for today:

Give an overview of the results.

Explain why GGT groups show up here.

Connection to Buildings.



Motivation and Introduction

Question: Given two topological groups L,G and a homomorphism
ϕ : L→ G , can we find conditions on the groups ensuring that ϕ
is continuous?
Partial answer: If G is a group from GGT and L is locally compact
Hausdorff, this seems to be possible in many cases.

Convention: G carries the discrete topology.
Goal for today:

Give an overview of the results.

Explain why GGT groups show up here.

Connection to Buildings.



Motivation and Introduction

Question: Given two topological groups L,G and a homomorphism
ϕ : L→ G , can we find conditions on the groups ensuring that ϕ
is continuous?
Partial answer: If G is a group from GGT and L is locally compact
Hausdorff, this seems to be possible in many cases.
Convention: G carries the discrete topology.

Goal for today:

Give an overview of the results.

Explain why GGT groups show up here.

Connection to Buildings.



Motivation and Introduction

Question: Given two topological groups L,G and a homomorphism
ϕ : L→ G , can we find conditions on the groups ensuring that ϕ
is continuous?
Partial answer: If G is a group from GGT and L is locally compact
Hausdorff, this seems to be possible in many cases.
Convention: G carries the discrete topology.
Goal for today:

Give an overview of the results.

Explain why GGT groups show up here.

Connection to Buildings.



Motivation and Introduction

Question: Given two topological groups L,G and a homomorphism
ϕ : L→ G , can we find conditions on the groups ensuring that ϕ
is continuous?
Partial answer: If G is a group from GGT and L is locally compact
Hausdorff, this seems to be possible in many cases.
Convention: G carries the discrete topology.
Goal for today:

Give an overview of the results.

Explain why GGT groups show up here.

Connection to Buildings.



Motivation and Introduction

Question: Given two topological groups L,G and a homomorphism
ϕ : L→ G , can we find conditions on the groups ensuring that ϕ
is continuous?
Partial answer: If G is a group from GGT and L is locally compact
Hausdorff, this seems to be possible in many cases.
Convention: G carries the discrete topology.
Goal for today:

Give an overview of the results.

Explain why GGT groups show up here.

Connection to Buildings.



Historical Results

Theorem (Dudley 1961)

Any homomorphism from a locally compact Hausdorff group into a
free (abelian) group is continuous.

Theorem (Morris-Nickolas, 1976)

Any abstract group homomorphism from a locally compact
Hausdorff group into a free product of groups is continuous or the
image of the homomorphism is contained in a conjugate of one of
the factors.

Theorem (Dudley/Conner-Corson 2019/Kramer-Varghese 2019)

Any group homomorphism ϕ : L→ AΓ from a locally compact
Hausdorff group into a right-angled Artin group is continuous.
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Historical Results

Definition (Conner-Corson 2019)

A group G is called lcH-slender if every homomorphism ϕ : L→ G
from a locally compact Hausdorff group L to G is continuous.

Theorem (Corson-Varghese 2019)

A group G is lcH-slender if and only if it is torsion free and does
not contain Q or the group of p-adic integers Zp.

Is this the ”best” we can do?
Yes (it is an ”iff”-Theorem)...
...and no, e.g. the Theorem of Morris and Nickolas also gives
information about groups containing torsion or Q or Zp.

General Theme

If G is rich in structure then ϕ : L→ G is continuous or the image
is ”small”.
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More History

Theorem (M.-Varghese 2020)

Let Φ: L→ Isom(X ) denote a group action from a locally
compact group L on a CAT(0) space of finite flat rank. If

fixed
point sets of single elements and of closed subgroup behave
”nicely”, then the pattern holds. In this case Φ is either continuous
or there is a non-empty proper invariant subset Fix(Φ(H)) for
H ≤ L a closed subgroup.

Question: Does this pattern continue for groups acting nicely on a
more general metric space, say a Helly group? Or more generally a
metrically injective group?
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Results for today

Theorem (Keppeler-M.-Varghese, 2021)

Let G be a discrete group. If

(i) G does not include Q or the p-adic integers Zp for any prime
p as a subgroup,

(ii) G does not include the Prüfer p-group Z(p∞) for any prime p
as a subgroup,

(iii) torsion subgroups in G are artinian,

then any group homomorphism ϕ : L→ G from a locally compact
group L to G is continuous, or there exists a normal open subgroup
N ⊆ L such that ϕ(N) is a non-trivial torsion group.
If additionally

(iv) G does not have non-trivial torsion normal subgroups,

then every surjective ϕ : L→ G is continuous.
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Results for today

Corollary (Keppeler-M.-Varghese 2021)

If G is a subgroup of

1 a virtually lcH-slender group,

2 a cocompactly cubulated CAT(0) group,

3 a CAT(0) group whose torsion subgroups are artinian, e.g. a
Coxeter group,

4 a Gromov-hyperbolic group,

5 a metrically injective group whose torsion subgroups are
artinian, e.g. a Helly group whose torsion subgroups are
artinian,

6 a finitely generated residually finite group whose torsion
subgroups are artinian, e.g. the (outer) automorphism group
of a right-angled Artin group,
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7 a one-relator group,

8 a finitely generated linear group in characteristic 0,

9 the Higman group,

then any group homomorphism ϕ : L→ G from a locally compact
group L is continuous or there exists a normal open subgroup
N ⊆ L such that ϕ(N) is a torsion group.
If G does not have non-trivial torsion normal subgroups, then every
surjective ϕ : L→ G is continuous.

Proofidea for the Theorem.

Combine Iwasawa’s Structure theorem (connected case) and van
Dantzig’s Theorem (t.d. case). Study compact groups, abelian
divisible groups and torsion groups and their images.
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Why GGT groups?

Given a group G and an action Φ: G → Isom(X ) we can often use
the properties of the action to show that certain subgroups can’t
exist:

Definition (Haettel 2021)

A group G is called metrically injective if it acts geometrically on
an injective metric space, that is a metric space, which is an
injective object in the category of metric spaces and 1-Lipschitz
maps.

Example (Injective metric spaces)

The real line, R-trees, finite dimensional CAT(0) cube complexes
with the l∞ metric,...
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Why GGT groups?

Example (Metrically injective groups)

Gromov-hyperbolic groups,

uniform lattices in GLn(R), uniform
lattices in Euclidean buildings of type C̃n, Artin groups of type
FC,...

Lemma

Let G denote a metrically injective group and H ≤ G a subgroup.
If H is almost divisible, then H is a torsion group. In particular a
metrically injective group does not contain Q or the p-adic integers
Zp as a subgroup. Additionally, a metrically injective group does
not contain the Prüfer p-group Z(p∞) as a subgroup.
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Why GGT groups?

Proofidea.

Let G be a group acting geometrically on a metrically injective
space X and let g ∈ G denote an almost divisible element.

There exists a barycenter map on X which behaves nicely with
translation lengths of isometries. Use that to show that
|Φ(gn)| ≥ n|Φ(g)| for all g ∈ G .
Φ(g) is either hyperbolic or elliptic. If it is elliptic, it is a torsion
element. But it can’t be hyperbolic because
inf{|Φ(l)| : Φ(l) is a hyperbolic isometry} > 0.
For the Prüfer-p group show that a metrically injective group only
has finitely many conjugacy classes of finite subgroups.

Lemma

A residually finite group does not contain Q or the Prüfer-p
subgroup Z(p∞).
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For the Prüfer-p group show that a metrically injective group only
has finitely many conjugacy classes of finite subgroups.

Lemma

A residually finite group does not contain Q or the Prüfer-p
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New Examples and Buildings

Proposition

Let Γ be a finite graph and GΓ denote a graph product of groups.
If all the vertex groups satisfy properties (i) - (iii) of the Theorem
(no poison subgroup and torsion subgroups are artinian), then so
does GΓ.

Proofidea.

For a graph product GΓ there exists a right-angled building XΓ on
which GΓ acts isometrically. For the ”poison subgroups” we can
apply our tools from before to reduce to stabilizers of vertices. The
artinian subgroup case can also be reduced to vertex stabilizers
with a similar argument. Stabilizers of vertices are induced by
complete subgraphs and are thus direct products. Checking the
desired result holds for direct products is an algebra exercise.
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