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K

Can we tell the difference between
a scarf and a sweater

knowing only a part of the knitting?



Introduction
Conventions

Conventions

] Two vertices linked by an edge are at distance 1.
→ It induces a distance on the entire graph.

] BX(x, R) ∶= {vertices at distance R from x}.

Exemple

d(x1, x2) = 3

x1

x2

B(x, 2) x
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I — LG-rigidity
I.1 — Graphs locally the same

I.1 – Graphs locally the same

Motivations
] Every regular graph of degree d is covered by the d-regular
tree.

] A complete Riemannian manifold which is locally isometric to
a symmetric space is covered by a symmetric space.

Let R > 0 and let X, Y be two graphs.

Definition. We say that X is R-locally Y, if:

(∀x ∈ X) (∃y ∈ Y) ∶ BX(x, R) isometric to BY(y, R).
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I.2 — Local-to-Global Rigidity

Definition.
] We say that ρ : X → Y is a covering if ρ is surjective and if:

∀x ∈ X ρ ∶ B(x, 1) bijective⟶ B(ρ(x), 1).

Example

ρ ∶
⎧
⎨⎩

ℤ → ℤ/6ℤ,
m ↦ m mod 6.
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Definition.
] Let R > 0. We say that X is LG-rigid at scale R if every

graph that is R-locally X is covered by X.

Interlude: Knitted Interpretation
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I.3 — Examples and non-examples

Example (Benjamini-Ellis, ‘16)
For all m > 0, the Cayley graph (ℤm, {±e1, … ,±ed}) is LG-rigid
at scale 3.

Example (de la Salle-Tessera, ‘19)
If X has a cocompact isometry group and is quasi-isometric to a
tree then X is LG-rigid.

Example (de la Salle-Tessera, ’16) If car(𝕂) = 0 and n ≠ 3 then
the Bruhat-Tits building of PSLn(𝕂) is LG-rigid.
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I.3 — Examples and non-examples

Non-examples (De la Salle-Tessera)

] 𝔽2 × 𝔽2 × ℤ/2ℤ admits a non-LG-rigid Cayley graph.
→ Torsion

] The Bruhat-Tits building of PSLn(𝔽p((t))) is not LG-rigid.

] Let d ≥ 3. There exists a torsion-free cocompact lattice in
PSLd (𝔽p((t))) that is not LG-rigid.
→ Characteristic p.
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II.1 — Context and motivations

] Two Cayley graphs of a same group are q.i.
] 𝔽2 × 𝔽2 × ℤ/2ℤ admits a LG-rigid Cayley graph and a

non-LG-rigid one.
→ Hence LG-rigidity is not stable by q.i.

But…

] We saw that a cocompact graph q.i. to a tree is LG-rigid.
] The building of PSL2(𝕂) is a regular tree.

→ What about quasi-buildings of higher dimension?
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II.2 — Quasi-buildings

II.2 — Quasi-buildings: rigidity

Theorem. [E., ’20] Let 𝕂 be a non-Archimedean local
field s.t. char(𝕂) = 0 and 𝒳 be the building of PSLn(𝕂)
with n ≠ 3. If X is a graph that is quasi-isometric to 𝒳
and sufficiently friendly1, then X is LG-rigid.

1 Isom(X) is transitive and embedds in Isom(𝒳) s.t. the
quasi-isometry is Isom(X)-equivariant and s.t. Isom(X) is of
finite index in Isom(𝒳).
Example Torsion-free lattices of PSLn(𝕂) are quasi-isometric to
the building and friendly.
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III.1 — Prints

] The vertices can be colored such that two adjacent
vertices have different colors.

Example (for n=2)
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III.1 — Prints

Definition. Let c be a vertex color.
If x vertex of the building, its print of color c is the set of
vertices of B(x, 1) of color c.

Example in dim. 2

x y1

y2

y3
B(x, 1)

y1

y2

y3

Print of color blue
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III — Idea of the proof
III.1 — Print

III.1 — Prints

Property.[E, ’20] Let c be a color of vertices.
A vertex of the building is uniquely determined by its
print of color c.

Example In the last example x is uniquely determined by the
data {y1, y2, y3}.

We only need a partial local information to reconstruct
the building.
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III — Idea of the proof
III.2 — Proof: Overview

Key Idea Use the building’s rigidity

] Step 1 Reconstruct (locally) the building;
] Step 2 Pullback the covering.

X 𝒳q⟶

quasi-isometric to the building

Y

R-loc

Construction of a graph locally 𝒳

𝒴

“Bricks” coming from Y, assembled on the model of 𝒳Use of the building’s LG-Rigidity

ι Covering

“Pullback” the covering by 𝒳 to X

Covering
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III — Idea of the proof
III.3 — Embroidery

III.3 — Edges embroidery: General idea

Definition of edges in 𝒴

General Idea “Fabric” of prints and vertices Y on which we
“stitch” the edges of X.

More precisely we consider the set of vertices in Y contained
in a ball of radius R we “read” on X how to link the vertices.
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Conclusion
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A — Embroidery

A — Embroidery: Key Lemma

Lemma.[De la Salle, Tessera] If 𝒢 is a graph with cocompact
isometry group, then for all r1 > 0 there exists r2 s.t. for all
g ∈ 𝒢 and all isometry f from B𝒢(g, r2) to 𝒢, the restriction of f
to B𝒢(g, r1) coincides with a (global) isometry of 𝒢.

B(g, r2) f B(f(g), r2)B(g, r1) B(f(g), r1)
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A — Embroidery

A.2 — Embroidery: Key lemma

The key lemma of de la Salle and Tessera allows us to:

] Show that the construction does not depend of the choice
of f.

] Extend the construction made on ball of radius R along the
paths.

] Show that this construction does not depend on the path
taken.

→ The edges are defined on the entire graph 𝒴.
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Mapmaking

Local maps & Planisphere

Fix y ∈ Y and f : BY(y, R) → BX(f(y), R).

Local isometry from 𝒴 to 𝒳

Φf(y) = qf(y) ϕf(𝒫(x)) = x.

→ Extends to a global isometry from 𝒴 to 𝒳 denoted by ιf.

To each local map f corresponds a planisphere q−1ιfκ
centered in y.
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Mapmaking

Overview

X 𝒳q−1

⟵

Y 𝒴κ

ιf

B𝒴(y, r)

B𝒳(qf(y), r)

ϕf = ιf

Goal: Show that q−1ιfκ is an isometry from Y to X.
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Mapmaking

Method

] The map q−1ιfκ is bijective from Y to X.

Y κ⟶ V(Y) ιf⟶ blue vertices
q−1

⟶ X.
] Local isometry.

} On BY(y, R) we have q−1ιfκ(y′) = f(y′).
→ Isometry on BY(y, R).

} Transition maps are in PSLn(ℚp).
ι−1f ιf’ ∈ PSLn(ℚp).

} Equivariance of q et spreading step by step.

⇒ Global isometry.
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