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Unitary representations

Why do we study unitary representations ?

Groups G ⇒ actions G y X .

Locally compact groups G ⇒ Haar measure µ
⇒ actions on Hilbert spaces G y H

The left-regular representation

Let G be a locally compact group we define a group action G y L2(G , µ):

λG (g)f (h) = f (g−1h) ∀g , h ∈ G .

This define a continuous faithfull action of G on a Hilbert space.
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Unitary representations of locally compact groups

Representations

A unitary representation of a locally compact group G is a continuous
group homomorphism :

π : G → U(Hπ)

where Hπ is a complex Hilbert space.
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π : G → U(Hπ)

where Hπ is a complex Hilbert space.

Equivalence representations

Two representations π and σ are said to be equivalent when there exists
a unitary operator :

U : Hπ → Hσ

such that
Uπ(g) = σ(g)U ∀g ∈ G .
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Representations

A unitary representation of a locally compact group G is a continuous
group homomorphism :

π : G → U(Hπ)

where Hπ is a complex Hilbert space.

Irreducible representations

A representation is called irreducible when the only closed invariant
subspaces W ⊆ Hπ (e.g π(G )W ⊆W ) are {0} and Hπ.
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Decomposition of representations

Decomposition of representations

Let G be a group.

Every representation π of G decomposes uniquely as a direct sum of
irreducible representations of G :

π '
⊕
i∈N

niσi .

Let G be a locally compact group.

Every representation π of G decomposes (possibly not uniquely) as a
direct integral of irreducible representations of G :

π '
∫
Ĝ
σ dνπ(σ).
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Ĝ
σ dνπ(σ).

Semal Lancelot (UCLouvain-FNRS GRANT) The type I conjecture on trees October 7, 2021 4 / 21



Decomposition of representations

Decomposition of representations

Let G be a compact group.
Every representation π of G decomposes uniquely as a direct sum of
irreducible representations of G :

π '
⊕
i∈N

niσi .

Let G be a locally compact group.

Every representation π of G decomposes (possibly not uniquely) as a
direct integral of irreducible representations of G :

π '
∫
Ĝ
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Right building blocks

Factorial representations

A representation is said to be factorial when for any decomposition

π ' σ1 ⊕ σ2

we have that
σ1 ≤ ∞σ2 and σ2 ≤ ∞σ1.
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Right building blocks

Factorial representations

A representation is said to be factorial when for any decomposition

π ' σ1 ⊕ σ2

we have that
σ1 ≤ ∞σ2 and σ2 ≤ ∞σ1.

Non-example

Let σ and τ be not equivalent irreducible representations.

The
representation:

π ' n1σ ⊕ n2τ

is a not factorial for any n1, n2 ≥ 1.
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Decomposition of representations

Decomposition of representations

Let G be a locally compact group.

Every representation π of G decomposes (possibly not uniquely) as a
direct integral of irreducible representations of G :

π '
∫
Ĝ
σ dνπ(σ).

Every representation π of G decomposes uniquely

as a direct integral
of factorial representations of G :

π '
∫
Fact(G)

σ dνπ(σ).
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Type I groups

A locally compact group is called a type I group when every of its
factorial representations is of the form:

π ' nσ

for some irreducible representation σ and n =∞, 1, 2, ...

Remark

For type I groups

the decomposition of representations into direct
integral of irreducible representations is unique.
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Type I groups

Examples of type I groups

Finite groups.

Compact groups.

Abelian groups.

Virtually abelian discrete groups.

Semisimple algebraic groups over local fields.

The full automorphism group of a semiregular tree.

Examples of non-type I groups

Free groups with rank ≥ 2.

Non-virtually abelian discrete groups.
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Type I conjecture on trees

Which closed subgroup of Aut(T ) is type I amoung non-amenable
groups ?

Amenability criterion in trees

A closed subgroup G ≤ Aut(T ) is amenable if and only if G satisfies one
of the following :

G fixes a vertex of T .

G stabilizes an edge of T .

G fixes a point in the boundary.

G stabilizes a pair of points in the boundary.
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The type I conjecture on trees

Type I conjecture on trees (Nebbia-Houdayer-Raum)

Let T be a locally finite thick tree and let G ≤ Aut(T ) be a closed
non-amenable subgroup acting minimaly on T .
Then, G acts transitively on the boundary if and only if it is type I.

Type I conjecture on trees

Let ∆ be a locally finite thick building of type I2(∞) and let G ≤ Aut(∆)
be a closed non-amenable subgroup acting minimaly on ∆.
Then, G comes from a B-N pair if and only if it is type I.
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Part I

Part I : G acts transitively on the boundary then G is type I.

Partially solved
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CCR groups

CCR groups

A locally compact group G is called CCR if every irreducible
representation π of G is admissible i.e. for every compact subgroup
K ≤ G the multiplicities ni appearing in the decomposition :

π|K'
⊕
i

niσi

into irreducibles of K are all finite.

Criterion for “type I”ness

CCR groups are type I.
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CCR groups

Examples of CCR groups

Finite groups.

Compact groups.

Abelian groups.

Semisimple algebraic groups over local fields.

The full automorphism group of a semiregular tree.
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Representations of Aut(T )

The topology of G ≤ Aut(T )

Let G ≤ Aut(T ) be a closed subgroup. The sets

FixAut(T )(T ) = {g ∈ Aut(T )|∀v ∈ T : gv = v}

where T is a complete finite subtree form a b.o.n.c.o. of G .
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The irreducible representations of Aut(T )

Lemma

Let π be a representation of G .

Then, there exists a complete finite
subtree T of T such that π admits a non-zero FixG (T )-invariant vector
ξ ∈ Hπ i.e. π(k)ξ = ξ ∀k ∈ FixG (T ).

Proof.

Let ξ ∈ Hπ be non trivial. Now,
∫
FixG (T ) π(g)ξdµ(g) is FixG (T )-invariant.

The function g 7→< π(g)ξ, ξ > is continuous and non-zero at g = 1G .
∃ a big enough T such that

∫
FixG (T ) π(g)ξdµ(g) 6= 0.
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Minimal subtree

Given a representation π of G , what is the smallest complete finite
subtree T for which it admits invariant vectors ?

Three types

If the minimal subtree T is :

a vertex

π is called spherical.
G is transitive on the boundary ⇒ classified and CCR. (Ol’Shanskii)

an edge

π is called special.
G is transitively on the boundary ⇒ classified and CCR. (Ol’Shanskii)

bigger than an edge

π is called cuspidal.
G has the Tits independance property (Ol’Shanskii-Amann-Ciobotaru)
or is a Radu groups (Semal) ⇒ classified and CCR.
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Radu Groups

Classification (Radu 2017)

When T is a (d0, d1)-semiregular tree with d0, d1 ≥ 6

, Radu has
completely classified non-compact closed subgroup acting transitively on
the boundary ∂T and whose local action at every vertex contains the
alternating group.

Remark

The set Θ of integers d ∈ N for which a 2 transitive subgroup of Sym(d)
contains the alternating group Alt(d) is assymptotically dense in N.
The 10 smallest elment of Θ being 34, 35, 39, 45, 46, 51, 52, 55, 56, 58.

This solves the part I of the type I conjecture for numerous
semi-regular trees such as the (34, 55)-semiregular tree.
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Part II of the type I conjecture

Part II : G is type I then it acts transitively on the boundary.

Completely solved !
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Part II of the type I conjecture

Theorem (Nebbia 1999)

A CCR subgroup of Aut(T ) acts transitively on the boundary.

Theorem (Houdayer-Raum 2016)

Let G ≤ Aut(T ) be a closed non-amenable type I subgroup acting
minimally on T then it acts

locally 2-transitively.
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Part II of the type I conjecture

Theorem (Kalantar-Monod-Caprace (Fresh of the week))

Let G be a hyperbolic locally compact group such that:

1 G contains a cocompact lattice.

2 G is type I.

Then, G contains a cocompact amenable subgroup.

Corollary

Let T be a locally finite thick tree and let G ≤ Aut(T ) be a Type I closed
non-amenable subgroup acting minimaly on T . Then, G has a cocompact
amenable subgroup and hence acts transitively on the boundary of T .

Theorem

Let G ≤ Aut(T ) be a Type I closed non-amenable subgroup acting
minimaly on T .

Then, G acts transitively on the boundary of the tree.
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Thank you

Thank you !!
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