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Motivation: Moufang twin trees

Let AT, A~ be two thick trees.
(1) A symmetric map
§:V(AT) x V(AT)UV(AT) x V(A7) — Nis called a
codistance if
(i) Foree {+,—},x¢ € V(A®) and y~¢,z7¢ € V(A™¢) adjacent
we have §(x€, y~¢) = 0(x,z7¢) £ 1.
(ii) If ee{+,-}, x¢ € V(A®) and y—© € V(A~€) with
d(x%,y~€) > 0, then there exists a unique z~¢ € V(A™°)
adjacent to y~ € such that §(x¢,z7¢) = §(x,y ) + 1.
(2) We call (xT,y7) € V(AT) x V(A™) opposite if
o(xt,y7)=0.
(3) If § is a codistance for AT and A, then (AT, A™,4) is called
a twin tree.




Motivation: Moufang twin trees

Let A = (AT,A™,0) be a twin tree.

o Let a° = (x§,x{,...) be a half-apartment (one-direction
infinite path) in A€ for e € {+,—}. Then (a',a7) is called a
twin root if 6(x,-+,xj*) =i+ foralli,j>0.

o Let X = (x5)nez be an apartment (two-direction infinite
path) in A€ for e € {+, —}. Then (X7,X7) is called a twin
apartment if 5(x,-+,xj_) =|i—Jj| forall i,j € Z.

o Let a = (a™, ™) be a twin root with o = (x§)s>0 for
e € {+,—}. Set U, :={g € AutA | y& = y for all y adjacent
to some x5 for some n > 0}. Then U, is called the root group
associated to .

@ A is called Moufang if for every twin root « the root group U,
acts transitively on the set of twin apartments containing «.




@ Bruhat-Tits trees for Chevalley groups of relative rank one
over k((t)) resp. k((t™1)), where k is a field.

@ Twin trees for Kac-Moody-groups.
@ Lot of other examples.

@ Tits: There are uncountably many non-isomorphic twin trees
of valency 3 (and also for every other valency).




From Moufang twin trees to Z-systems

Let A = (A',A™,0) be a Moufang twin tree, G < AutA
containing all root groups and ¥ = (X*,X7) a twin apartment
with ¢ = (x5)nez and 8(x;7, x;,,) = |n — m| for all n,m € Z. Then
an = (af,ay) with af = (x:M)i>p and a; = (x7 )i<n is a twin
root for all n € Z. Set U, := U,, and U := (U, | n € Z) (the
unipotent horocyclic group). Then we have:
(1) [UmyUn] < Umng1...Up—q1 forall m< neZ.
(ii) For every u € U* there are uniquely determined m < n € Z,
ui € Uy for m<i<nsuchthat u =uy...u, and up, u, # 1.
(iii) There is an automorphism o € Gy such that UJ = U, for
all n € Z.
(iv) If T < AutA is the group fixing X pointwise, then
T < Ng(Up) for all n € Z.

This motivates the definition of a Z-system



Z-systems

Let X be a group, (Xp)nez be a family of subgroups of X,
o € Aut(X) and T < Aut(X) with T2 = T.
(1) (X, (Xp)nez, 0, T) is called a Z-system if
(1) [Xmy Xa] < Ximg1 ... Xp—1 forall m< neZ.
(ii) For every x € X* there are uniquely determined m < n € Z,
x; € X; for m < i < n such that x = x,, ... x, and x,,, x, # 1.
(iii) X7 = Xj4o for all n € Z.

n

(iv) Xt =X, foral he T and n€ Z.

(2) A Z-system (X, (Xn)nez, 0, T) is called irreducible if T acts
irreducibly on X, for all n € Z.

(3) A Z-system (X, (Xn)nez, 0, T) is called nilpotent (resp.
abelian, etc.) if X, is nilpotent (resp. abelian etc.) for all
n e Z.




(1) The map o is called a shift of lenght 2, the group T the torus.
(2) An irreducible, nilpotent Z-system is abelian.

(3) Not every Z-systems comes from a Moufang twin tree. In a
Moufang twin tree, every root groups U, are isomorphic to a
root group of a Moufang set. The proper Moufang sets are
conjectured to have nilpotent root groups. Therefore, it is
reasonable to focus on nilpotent Z-system.




(i) Let G := SLy(Kk[t, t™1]),

._ 1 0. 1

Uu = {<f 1>.f€k[t,t ]},
1 0\
U, = {(a-t" 1>,a€k} for ne Z,
a o0 *

T = {(0 a_1>;a€]k},

. t 0
o = 0 1 )

This Z-system comes from the Moufang twin tree of G. It is
irreducible unless k is a non-perfect field of characteristic 2.
We have [Un, Un] =1 for all n,m € Z, hence U is abelian.




(i) Let k be a field with chark # 2, K :=k(t), * € Aut(K) with
a* = afor all a € k and t* = —t. Consider the following
subgroups of SL3(k[t, t~1]):

1 0 0
U:= a 1 0 |;abecktt],N(a)+Tr(b)=0,
b —a* 1
1 0 O
Uspy1 = 0 1 0 |:beck} and
b-t?rt1 0 1
1 0 0
Usy, = a-t" 1 0 |;ackjpforneZ
= gof=a)p 1




This Z-systems comes from the twin tree for SU3z(k[t, t71]). We
have [Usn+2, Usm] = Uzpyam+1 for all nym € Z and [Ug, Up] =1
for all other integers k and £. Hence we have

Z(U) = U" = (Uzny1 | n € Z), thus U is nilpotent of class 2.




(iii) Let A and B be two arbitrary groups. Set
X :={x = (Xn)nez | x2n € A and xp+1 € B for all n € Z}.
Xn:={x € X |x;=1forall i # n},
o: X = X: (Xn)nEZ = (an2)n€Z
Then (X, (Xn)nez,0, T) is Z-system.




Theorem

(G., Horn, Miihlherr 2016) Let (X, (Xn)nez, 0, T) be a Z-system
such that X,, has prime order for all n € Z. Then X is nilpotent of
class at most 2.

Remark

(1) The proof contains a gap which we were able to fix.

(2) The theorem also follows by a recent result of Glockner and
Willis about contraction groups.

(3) We used another definition of Z-system for this theorem
(without T).

(4) The proof relies on the fact that X, has no proper subgroup.
Idea: Consider Z-systems such that X, has no non-trivial
T-invariant subgroup, i.e. irreducible Z-systems.




Definition

Let (X, (Xn)ncz, 0, T) be a Z-system

(i) For m < n € ZU{oo,—0c0} set Xpmp:=(Xi | m<i<n).

(ii) For x € X* set pu(x) :=max{m € Z | x € Xm o},
v(x):=min{n € Z | x € X_oo.n} and w(x) :=n—m > 0.

(iii) Call x € X* even (resp. odd) if u(x) is even (resp. odd).

(iv) A subgroup Y < X is called shift-invariant if Y™ =Y for all
T€(T,o0).

(v) We say that a subgroup Y of X has finite T-index if there
exists a finite subset M of X with X = (Y UMT). Otherwise,
Y has infinite T-index.




Shift-invariant subgroups

(1) If Y, Z < X are shift-invariant subgroups, then (Y, Z), Y NZ
and [Y, Z] are also shift-invariant.

(2) If Y < X is shift-invariant and Z is characteristic in Y, then Z
is also shift-invariant. In particular, every characteristic
subgroup of X is shift-invariant.

(3) If X, is finite for all n € Z, then Y < X has finite T-index if
and only if | X : Y| < oc0.




Shift-invariant subgroups

From now on, (X, (Xn)nez, 0, T) is irreducible and nilpotent
(hence abelian).

Theorem

Let 1 £ Y < X be shift-invariant.

(i) Y is of finite T-index if and only if Y contains both odd and
even elements.

(ii) IfY is of infinite T-index and y € Y* with w(y) minimal,
then Y = (y{T:9)).

(iii) IfY is of finite T-index and x,y € Y* even resp. odd with
w(x),w(y) minimal, then Y = (x{T:2) U y{T:9)).




Shift-invariant subgroups

Let 1 # Y < X be shift-invariant. Then Y' < Y.

X' has infinite T-index. l

Let Y < X be shift-invariant and of infinite T-index. Then
[Y,X]=[[Y,X], X].

Let Y < X be shift-invariant with [Y,X] =Y. Then Y is abelian.




Shifts of length 1

If we have a shift of length 1, i.e. an automorphism 7 of X with
T =T and X = X,41 for all n € Z, then X is abelian.

Since X' is shift-invariant and of infinite T-index, X’ cannot
contain both odd and even elements. But 7 normalises X’ and
interchanges the sets of even and odd elements. Hence X/ =1. [




Main result

Let (X, (Xn)nez, 0, T) be an irreducible, nilpotent Z-system. Then
X is nilpotent of class at most 2.

Proof.

Consider the shift-invariant normal subgroup Y := [X’, X]. Then Y
is abelian. X acts on the abelian group Y by conjugation. We have
[Y,X] =Y. If Y #1, then we find Z QY such that X acts

trivially on Y/Z, contradiction. Hence Y =1, s0 X’ < Z(X). [

| \




Let (X, (Xn)nez, o, T) be a nilpotent Z-system.

(1) X is nilpotent.

(2) There is a function f : N> — N such that the class of X is
bounded by f(ng, n1), where nj is the class of X; for i =0, 1.
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