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Intro The general idea

Let d ∈ Z>0 and let M = (mij) ∈ Zd×d = Matd(Z).

M

ΛM QM

OK-module in Kd×d polytope in Rd−1
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Let d ∈ Z>0 and let M = (mij) ∈ Zd×d = Matd(Z).

M

ΛM QM

OK-module in Kd×d polytope in Rd−1

?

Goal: understand what the interplay between these objects is.
Pioneers: Plesken and Zassenhaus (1983).
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The setting Valued fields

Let K be a field with a surjective valuation map

val : K → Z ∪ {∞}.

Example. K = Q and val = val3 is the 3-adic valuation. Then

val(45) = val(325) = 2, val(13/27) = val(3−313) = −3.

Denote
• OK = {x ∈ K : val(x) ≥ 0} is the valuation ring of K,
• mK = {x ∈ K : val(x) > 0} /OK unique maximal,
• π ∈ K such that val(π) = 1 is a uniformizer.

Then mK = (π) and every ideal of OK is of the form mk
K = (πk).

If val = valp is the p-adic valuation, then π = p.
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Matrices and orders The module ΛM

The valuation val can be extended to Kd or Kd×d coordinate-wise:

val3(2, 15,−1/12) = (0, 1,−1), val3

(
0 66
−1/3 7

)
=
(
∞ 1
−1 0

)

Then the set

ΛM = {X ∈ Kd×d : val(X) ≥M}

is an OK-module because in K:

• val(x+ y) ≥ min{val(x), val(y)}
• val(xy) = val(x) + val(y)
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(
0 66
−1/3 7

)
=
(
∞ 1
−1 0

)

Then the set

ΛM = {X ∈ Kd×d : val(X) ≥M}

is an OK-module because in K:

• val(xij + yij) ≥ min{val(xij), val(yij)} ≥ mij

• val(αyij) = val(α) + val(yij) ≥ 0 +mij = mij

Remark. ΛM has maximal rank d2 as a free OK-submodule of
Kd×d and it lives in a ring!
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Matrices and orders When ΛM is a ring

Example. For K = Q, d = 3, and val = valp:

valp
(

1 1 p
1 1 1
1 1 1

)
︸ ︷︷ ︸

X

=
(

0 0 1
0 0 0
0 0 0

)
︸ ︷︷ ︸

M

but

(
? ? 0
? ? ?
? ? ?

)
= val

(
2+p 2+p 1+2p

3 3 2+p
3 3 2+p

)
︸ ︷︷ ︸

X2

so ΛM is not a ring.

Example. If M = 0d×d, then ΛM = Od×d
K is a ring!
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3 3 2+p
3 3 2+p
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︸ ︷︷ ︸

X2

so ΛM is not a ring.
Example. M = 0d×d ⇒ ΛM = Od×d

K is a maximal order in Kd×d!

Definition.
• A (OK-)lattice in Kd is a free OK-submodule of rank d.
• An order in Kd×d is a lattice in Kd×d that is also a ring.

Remark. Orders of the form ΛM are called graduated, tiled, split
or monomial by different authors.
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Matrices and orders When ΛM is a ring

Proposition (Plesken). ΛM is an order if and only if

mii = 0, mij +mjk ≥ mik for 1 ≤ i, j, k ≤ d. (1)

Remark. If mii = 0, we write M ∈ Zd×d
0 . From now on we will

often implicitly assume that (1) holds.

Remark. Since ΛM ⊆ Kd×d, it naturally operates on Kd. We are
interested in the lattices that are ΛM -stable, i.e. all L such that
ΛML ⊆ L. Write L0 = OKe1 ⊕ . . .⊕OKed for the standard
lattice (wrt standar basis).
Example.
• The Od×d

K -stable lattices are {πnL0 : n ∈ Z}. (maximality)
• If L,L′ are ΛM -stable, then L ∩L′ and L+L′ are ΛM -stable.
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Matrices and orders Stable lattices

Proposition (Plesken). A lattice L in Kd is stable under ΛM if
and only if there exists u ∈ Zd with

ui − uj ≤ mij for 1 ≤ i, j ≤ d, (2)

such that L = Lu = OKπ
u1e1 ⊕ . . .⊕OKπ

uded. Moreover, two
stable lattices Lu and Lu′ are isomorphic as ΛM -modules if and
only if there exists n ∈ Z such that Lu′ = πnLu.

Remark. Let u ∈ Zd and set M(u) = (ui − uj).
• Lattices with L′ = πnL are called equivalent, denoted L ∼ L′

• Lattices of the form Lu are called diagonal and all have
compatible bases
• EndOK

(Lu) = ΛM(u) = {X ∈ Kd×d : val(X) ≥M(u)}
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Matrices and orders The Plesken-Zassenhaus ring

Let Γ = {L1, . . . , Ln} be a finite set of lattices in Kd. Then the
Plesken-Zassenhaus ring

PZ(Γ) = EndOK
(L1) ∩ · · · ∩ EndOK

(Ln)

of the configuration Γ is an order in Kd×d.

Remark.
• Each Li is PZ(Γ)-stable.
• Any Li ∩ Lj and Li + Lj is PZ(Γ)-stable.
• Any πnLi is PZ(Γ)-stable.

Proposition (Plesken). If Γ consists of diagonal lattices, then
PZ(Γ) is graduated. Moreover, the converse is also true.
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Everything tropically The operations

The min-plus and max-plus algebras (R, ⊕ ,�) and (R, ⊕ ,�) are
defined by the operations

a⊕ b = min{a, b}, a⊕ b = max{a, b}, a� b = a+ b.

Example. Lu ∩ Lu′ = Lu⊕u′ and Lu + Lu′ = Lu⊕u′

These operations induce also product of matrices.

Example. If M =
(

0 1
1 0

)
, N =

(
−2 0
3 1

)
, and u =

(
1
1

)
then

M �N =
(

4 2
3 1

)
, M �u =

(
2
2

)
,

M �N =
(
−2 0
−1 1

)
, M �u =

(
1
1

)
.
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Everything tropically The results for ΛM

Definition. QM = {[u] ∈ Rd/R1 : ui − uj ≤ mij} is a polytrope.

Proposition.
• ΛM is an order if and only if M �M = M

• Lu is a stable lattice if and only if M �ut ≥ ut

• Lu is ΛM -stable iff [u] ∈ QM ∩ (Zd/Z1) and actually

{[L] : L is ΛM -stable} ←→ QM ∩ (Zd/Z1)

Theorem. Let Γ = {Lu(1) , . . . , Lu(n)} be any configuration of
diagonal lattices in Kd. Then PZ(Γ) = ΛM where

M = M(u(1)) ⊕ M(u(2)) ⊕ · · · ⊕ M(u(n)).
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More interaction The polytrope region

Definition.
• Pd = {N ∈ Rd×d

0 : N �N = N} is the polytrope region
• Pd(M) = {N ∈ Pd : N ≤M} is the truncated poly region

Remark.
• Pd is a (d2 − d)-dimensional convex polyhedral cone, defined
by “idempotence” inequalities mik ≤ mij +mjk

• The number of facets of Pd is d(d− 1)(d− 2)
• For d = 3, 4, 5 we compute f -vectors and vertices of Pd

• Pd(M) parametrizes all subpolytropes of QM

• Pd(M) parametrizes all OK-orders containing ΛM

Indeed: N ≤M ⇐⇒ QN ⊆ QM ⇐⇒ ΛN ⊇ ΛM .
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More interaction Injectives and projectives

Definition. M ∈ Pd is in standard form if mij +mji > 0 (i 6= j).

Theorem. Let M ∈ Pd be in standard form. Then QM is both a
min-plus and a max-plus simplex. The min-plus vertices u are the
columns of M and represent Lu’s that are projective ΛM -modules.
The max-plus vertices v are the columns of −M t, and they
represent the injective ΛM -modules Lv.

Here d = 4 and M = J4 has all 1’s outside the diagonal.
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More interaction Ideals

For M in standard form, the nonzero fractional ideals of ΛM are

IN =
{
X ∈ Kd×d : val(X) ≥ N

}
,

where N ∈ Zd×d with N �M = M �N = N . Write N ∈ QM .

Remark.
• N ∈ Zd×d

0 ∩QM ⇒ IN = ΛN is an order
• N,N ′ ∈ QM ⇒ ININ ′ = IN �N ′

• (QM , � ) is a semigroup with neutral element M

Definition. The ideal class group GM of M is the maximal
subgroup of the semigroup QM .
Example. GJ2

∼= Z/2Z, GJ3
∼= Z/6Z, GJ4

∼= S4

Question. How does this sequence continue?
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Closing remarks From a buildings’ perspective

Definition. The Bruhat-Tits building Bd(K) is a simplicial
complex where:
• the vertices are equivalence classes of lattices in Kd,
• ([L1], . . . , [Ls]) is a simplex if L1 ⊃ L2 ⊃ . . . Ls ⊃ πL1

(up to reordering and picking representatives)

Remark. From the point of view of the building, looking at
diagonal lattices is the same as working in one apartment
(compatible bases)
Remark. If PZ(Γ) = ΛM , then QM describes the geodesic convex
hull of Γ in the building.

Question. What’s life like when you are not quarantined in one
apartment?
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And check out our Mathrepo page:
https:
//mathrepo.mis.mpg.de/OrdersPolytropes/index.html
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