## Optimization Methods for Machine Learning

Sebastian Sager

Institut für Mathematische Optimierung Wintersemester



## Machine Learning and Optimization

#### Main questions in this lecture

- How do optimization problems arise in machine learning applications and what makes them challenging?
- What have been the most successful optimization methods for large-scale machine learning and why?
- What recent advances have been made in the design of algorithms and what are open questions in this research area?

## Machine Learning and Optimization

#### Main questions in this lecture

- How do optimization problems arise in machine learning applications and what makes them challenging?
- What have been the most successful optimization methods for large-scale machine learning and why?
- What recent advances have been made in the design of algorithms and what are open questions in this research area?

#### Additional questions (in the exercises)

- How to use ML software?
  - How to implement optimization algorithms for ML?
  - What is Machine Learning? Artificial Intelligence?
  - How may / will / shall ML and AI change our future?



# General ML Optimization Problem

We learn a prediction function  $h: \mathcal{X} \mapsto \mathcal{Y}$  given labeled training data  $(x_i, y_i)_{i \in [n]}$  with  $x_i \in \mathcal{X}$  and  $y_i \in \mathcal{Y}$ :

$$\min_{h \in \mathcal{H}} \quad \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i)}_{\text{empirical risk, data fit}} + \underbrace{\Omega(h)}_{\text{regularization}} \tag{0.1}$$

The loss function  $\ell:\mathbb{R}^2\mapsto\mathbb{R}$ , the label space  $\mathcal{Y}$ , the prediction function space  $\mathcal{H}$ , and the regularization  $\Omega:\mathcal{H}\mapsto\mathbb{R}_0^+$  are chosen problem—specificly based on empirical experience.

# General ML Optimization Problem

We learn a prediction function  $h: \mathcal{X} \mapsto \mathcal{Y}$  given labeled training data  $(x_i, y_i)_{i \in [n]}$  with  $x_i \in \mathcal{X}$  and  $y_i \in \mathcal{Y}$ :

$$\min_{h \in \mathcal{H}} \ \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i)}_{\text{empirical risk, data fit}} + \underbrace{\Omega(h)}_{\text{regularization}}$$
(0.1)

The loss function  $\ell: \mathbb{R}^2 \mapsto \mathbb{R}$ , the label space  $\mathcal{Y}$ , the prediction function space  $\mathcal{H}$ , and the regularization  $\Omega: \mathcal{H} \mapsto \mathbb{R}_0^+$  are chosen problem—specificly based on empirical experience.

The chosen combination results in

- a particular approach in ML (SVM, neural networks, ...)
- mathematical properties that can/should be taken into account



#### **Table of Contents**

- Introduction to Machine Learning
- 2 Machine Learning Case Studies
- 3 Problem Definitions and Methods Overview
- 4 Efficient Calculation of Derivatives
- **5** Stochastic Gradient Methods
- 6 Noise Reduction Methods
- Second-Order Methods
- 8 Other Popular Methods
- X Some Thoughts on Al and our Future

## Optimierungsvorlesungen

Vorlesungszyklus Sebastian Sager:

|                                                     | Wann | Titel                                     | SWS | Zielgruppe |
|-----------------------------------------------------|------|-------------------------------------------|-----|------------|
| SS Gg. nichtlineare Optimierung 3+1 B4,B6,N         | WS   | Einführung in die Optimierung             | 4+2 | B3         |
|                                                     | WS   | Nichtlineare Optimierung                  | 4+2 | B5, M1     |
| WS Optimization Methods for Machine Learning 4+2 M1 | SS   | Gg. nichtlineare Optimierung              | 3+1 | B4,B6,M2   |
| 1                                                   | WS   | Optimization Methods for Machine Learning | 4+2 | M1         |
| SS Algorithmische Dynamische Optimierung 3+1 M2     | SS   | Algorithmische Dynamische Optimierung     | 3+1 | M2         |

### Further lectures on Machine Learning (usually SS):

- Kaibel: Discrete Aspects of Artificial Intelligence
- Richter: Numerik von Differentialgleichungen mit Neuronalen Netzen



#### Hints

#### Ideally, you have

- Einführung in die Optimierung
- Nichtlineare Optimierung
- Proficiency in programming (julia, python, ...)

#### Target group

- Master students mathematics
- PhD students
- Other disciplines welcome, but warning: mathematical point of view!

#### Comments

- Master thesis possible
- Possibly a seminar OMML next SS
- Online material (videos) available

